ため池の設計洪水位の計算

件名: サンプルデータ

1 計算条件

(1) ため池諸元

貯水量60000 (m³)常時満水位FWL+0.000 (m)常時満水時貯水面積16700 (m²)洪水の堤体越流に対する余裕率20 (%)

用水路等からの流入量Qfix 0.000 (m³/s)

h - V曲線

h - V曲線は,満水面積にFWL以上の水深を掛けたものを貯留量とする。 また,出発水深はFWLとし,便宜上その水深を0とする。

水深 貯留量 h (m) V (m³) 1 0.000 0 2 1.000 16700

(2) 確率降雨強度式

降雨強度の算定に用いる200年確率降雨強度式は次式とする。

ここに ,

r ; 降雨強度(mm/h)

t ;降雨継続時間(h)

a;地方定数(= 377.921)

b;地方定数(= 3.908)

(3) 流域面積,流域平均流出係数および流域平均洪水到達時間係数 流域平均流出係数および流域平均洪水到達時間係数は加重平均により,流域全体の 流出係数および洪水到達時間係数を算定する。

流域名称	流域面積	ピーク済	ピーク流出係数		洪水到達時間係数	
	$A(km^2)$	fp	f p· A	C	C٠A	
林地	0.1194	0.80	0.0955	280	33.432	
耕地	0.0024	0.70	0.0017	280	0.672	
造成地	0.0005	0.90	0.0005	280	0.140	
池面	0.0167	1.00	0.0167	280	4.676	
	0.1390		0.1144		38.920	

流域平均流出係数

$$fp = \begin{pmatrix} (fp \cdot A) \\ A \end{pmatrix} = \begin{pmatrix} 0.1144 \\ 0.1390 \end{pmatrix} = 0.823$$

流域平均洪水到達時間係数

$$C = \begin{pmatrix} (C \cdot A) \\ A \end{pmatrix} = \begin{pmatrix} 38.920 \\ 0.1390 \end{pmatrix} = 280$$

(4) 洪水吐調整部断面形状

洪水吐調整部断面形状は,標準型越流堰式とし次の通りとする。

設計洪水時の流量係数 Cd 2.100 (m^{1/2}/s)

放流量は次式により算定する。

$$Qd = Cd \cdot B \cdot hd^{3/2}$$

ここに,

Qd;放流量(m³/s)

hd;設計水頭(速度水頭を含む越流総水頭)(m)

2 設計洪水流量の計算

設計洪水流量は確率的に200年に1回起こると推定される200年確率洪水流量に 20% の 余裕を見込むものとする。

200年確率洪水流量は,次に示す合理式によって推定する。

$$Qp = \begin{cases} 1 \\ 3.6 \end{cases} \cdot re \cdot A$$

ここに,

Qp; 洪水ピーク流量(m³/s)

re;洪水到達時間内の平均有効降雨強度(mm/h)

A ; 流域面積(km²)

(1) 洪水到達時間

洪水到達時間 t pは,次の2式を同時に満足する値とする。

$$tp = C \cdot A^{0.22} \cdot re^{-0.35}$$

 $re = fp \cdot r$

ここに,

tp;洪水到達時間(min)

C ; 洪水到達時間係数(土地利用条件に応じて異なる値)

A ; 流域面積(km²)

fp; ピーク流出係数

r ; 200年降雨確率強度(mm/h)

$$r = \begin{cases} a & 377.921 \\ t+b & t+3.908 \end{cases}$$

洪水到達時間計算表

計算回数 tの仮定値 確率降雨強度 有効降雨強度 洪水到達時間

n (回)	(min)	r(mm/h)	re (mm/h)	tp(min)
1	10.0	92.749	76.332	39.8
2	39.8	82.672	68.039	41.4
3	41.4	82.192	67.644	41.5
4	41.5	82.163	67.620	41.5

洪水到達時間は,角屋・福島式および確率降雨強度式との同時満足解として

$$tp = 41.5 (min)$$

を得る。

(2) 設計洪水流量

洪水到達時間 tp= 41.5(min) より,計算時間のピッチを 60(min) とする。

1) 降雨波形

確率降雨強度式より後方集中型の降雨波形を算定する。

n	t = n·	t	r	n•rn	In=n·rn-(n-1)·r(n-1)
	(min)		(mm/h)		(mm/h)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	60 120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380		77.001 63.968 54.708 47.790 42.425 38.143 34.646 31.737 29.278 27.173 25.350 23.757 22.352 21.103 19.987 18.983 18.075 17.250 16.497 15.807 15.173 14.587	77.001 127.936 164.124 191.160 212.125 228.858 242.522 253.896 263.502 271.730 278.850 285.084 290.576 295.442 299.805 303.728 307.275 310.500 313.443 316.140 318.633 320.914 323.035	77.001 50.935 36.188 27.036 20.965 16.733 13.664 11.374 9.606 8.228 7.120 6.234 5.492 4.866 4.363 3.923 3.547 3.225 2.943 2.697 2.493 2.281 2.121
24	1440		13.542	325.008	1.973

以上の計算結果を後方集中波形に並べて次表を得る。

n	時間	降雨強度r
	(h:m)	(mm/h)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	000:00 001:00 001:00 002:00 002:00 003:00 003:00 004:00 004:00 005:00 005:00 006:00 006:00 007:00 007:00 008:00 008:00 009:00 009:00 010:00 010:00 011:00 012:00 013:00 013:00 014:00 015:00 016:00 015:00 016:00 017:00 017:00 018:00 019:00 020:00 020:00 021:00 022:00 022:00 023:00	2.121 2.281 2.493 2.697 2.943 3.225 3.547 3.923 4.363 4.866 5.492 6.234 7.120 8.228 9.606 11.374 13.664 16.733 20.965 27.036 36.188
24	023:00 ~ 024:00	77.001

2) 流入ハイドログラフ

合理式より,降雨強度からため池流入洪水のハイドログラフを算出する。

$$Q = \frac{1}{3.6} \cdot fp \cdot r \cdot A$$

流入量 = 1.2 x Q + Q f i x

継続時間	降雨強度	Q	流入量
t (min)	r (mm/h)	(m^3/s)	(m^3/s)
60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320	1.973 2.121 2.281 2.493 2.697 2.943 3.225 3.547 3.923 4.363 4.866 5.492 6.234 7.120 8.228 9.606 11.374 13.664 16.733 20.965 27.036 36.188	0.0627 0.0674 0.0725 0.0792 0.0857 0.0935 0.1025 0.1127 0.1386 0.1546 0.1745 0.1981 0.2263 0.2615 0.3052 0.3614 0.4342 0.5317 0.6662 0.8591 1.1499	0.075 0.081 0.087 0.095 0.103 0.112 0.123 0.135 0.150 0.166 0.209 0.238 0.272 0.314 0.366 0.434 0.521 0.638 0.799 1.031 1.380
1440	77.001	2.4469	2.936
	t (min) 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380	t (min) r (mm/h) 60 1.973 120 2.121 180 2.281 240 2.493 300 2.697 360 2.943 420 3.225 480 3.547 540 3.923 600 4.363 660 4.866 720 5.492 780 6.234 840 7.120 900 8.228 960 9.606 1020 11.374 1080 13.664 1140 16.733 1200 20.965 1260 27.036 1320 36.188 1380 50.935	t (min) r (mm/h) (m³/s) 60 1.973 0.0627 120 2.121 0.0674 180 2.281 0.0725 240 2.493 0.0792 300 2.697 0.0857 360 2.943 0.0935 420 3.225 0.1025 480 3.547 0.1127 540 3.923 0.1247 600 4.363 0.1386 660 4.866 0.1546 720 5.492 0.1745 780 6.234 0.1981 840 7.120 0.2263 900 8.228 0.2615 960 9.606 0.3052 1020 11.374 0.3614 1080 13.664 0.4342 1140 16.733 0.5317 1200 20.965 0.6662 1260 27.036 0.8591 1320 36.188 1.1499 1380 50.935 1.6186

以上により,設計洪水流量Q1を得る。

$$Q1 = 2.936 \, (m^3/s)$$

3 設計洪水位の計算

ため池への流入および放流による水位変動は,流入量 I と流出量 O との差がため池に水平に 貯留するものとして連続の式を用いて求める。

$$I - O = \begin{cases} dV \\ dt \end{cases}$$

$$V(t+t) = V(t) + \{I(t+t/2) - O(t+t/2)\} \cdot t$$

$$I(t+t/2) = \begin{cases} I(t+t) + I(t) \\ 2 \end{cases}$$

$$O(t+t/2) = \begin{cases} O(t+t) + O(t) \\ 2 \end{cases}$$

ここに ,

V ; 貯留量(m³) V = f(H)

H ;水位(m)

I ; 流入量(m³/s)

O ; 放流量(m³/s) O = f(H)

t;計算時間のピッチ

(1) 洪水調節計算

計算時刻	継続時間	流入量	放流量	水 位	貯 留 量	備考
(h:m)	t (min)	$Qi(m^3/s)$	$Qo(m^3/s)$	H(m)	V (m³)	
_						
022:00 023:00 024:00 025:00 026:00 027:00 028:00 029:00 030:00 031:00 032:00 033:00	1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980	1.380 1.942 2.936 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.148 1.601 2.392 1.523 0.307 0.125 0.064 0.037 0.024 0.016 0.011	0.249 0.311 0.406 0.301 0.103 0.057 0.036 0.025 0.019 0.015 0.012	4159 5190 6783 5021 1726 948 608 425 314 242 193 157	最大

計算時刻	継続時間	流入量	放流量	水 位	貯 留 量	備考
(h:m)	t (min)	$Qi(m^3/s)$	$Qo(m^3/s)$	H(m)	$V(m^3)$	
034:00 035:00 036:00	2040 2100 2160	0.000 0.000 0.000	0.006 0.005 0.004	0.008 0.007 0.006	130 110 94	

以上により,最大放流量Q2を得る。

$$Q2 = 2.392 (m^3/s)$$
 Q1

(2) 設計洪水位

洪水調節計算結果より,最大の水深(越流総水頭)は 0.406(m) となる。 よって,設計洪水位HWLは次の通り求められる。

ここに,

FWL;常時満水位(m) h1 ;越流総水頭(m)